
A method for the extraction of microplastics from solid biowastes including biosolids, compost, and soil for analysis by µ-FTIR
Please note: As of 1 July 2025, the New Zealand Institute for Public Health and Forensic Science (PHF Science) is the new name for the Institute of Environmental Science and Research (ESR). Research and reports published prior to this date may reference the organisation’s former name.
Abstract
Few methods exist detailing the extraction of microplastics from organic matrices. A validated method for the successful extraction of microplastics from solid biowastes including biosolids, compost, and soil for spectroscopic analysis by micro-Fourier transform infrared spectroscopy (µ-FTIR) was developed. Solid dry biowastes were first digested with a wet peroxide oxidation (WPO) with iron (II) solution and 30% hydrogen peroxide followed by sequential density separations with ultra-pure water and 1.8 g cm−3 NaI in an optimised sediment-microplastic isolation (SMI) unit. The average recoveries for spiked microplastics were 92, 95 and 98% for bagged compost, biosolids, and soil, respectively. This method ensures a high microplastic recovery by first chemically disintegrating biowaste aggregates without employing destructive methods like milling and allows for successful density separations where the settled fraction is isolated off from the supernatant, allowing thorough rinsing of the equipment and thus a greater transferal of particles into the vacuum filtering device. Minimal processing steps reduce the instance of introducing contamination and particle loss. • Digestion as a first step to disintegrate aggregates to release entrapped microplastics • Density separation with SMI unit with the method adapted for biowastes • Minimal steps to reduce contamination and particle loss
view journal